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ABSTRACT 

 

The early recognition of potentially harmful traffic 

situations is an important goal of vision based driver 

assistance systems. Pedestrians, in particular 

children, are highly endangered in inner city traffic. 

Within the DaimlerChrysler UTA (Urban Traffic 

Assistance) project, we are using stereo vision and 

motion analysis in order to manage those situations. 

The flow/depth constraint combines both methods in 

an elegant way and leads to a robust and powerful 

detection scheme.  

A ball bouncing on the road often implies a child 

crossing the street. Since balls appear very small in 

the images of our cameras and can move 

considerably fast, a special algorithm has been 

developed to achieve maximum recognition 

reliability. 

 

I. INTRODUCTION 

 

Within the DaimlerChrysler UTA (Urban Traffic 

Assistance) project, different vision modules for inner 

city traffic have been developed [1,2]. This includes fast 

stereo vision for Stop&Go, traffic sign and light 

recognition as well as pedestrian recognition and 

tracking. It is the goal of our current investigations to 

add collision avoidance capabilities to the existing 

system. In particular, we intend to recognize situations 

that implicate a high risk of accidents with children 

running across the road. A scooter coming from the side, 

a child looming between parking cars as shown in Fig. 

1.1, or a ball bouncing on the road indicate such 

dangerous situations. A warning as well as an 

emergency reaction have to take place instantaneously in 

order to prevent accidents with serious injuries. 

 

Relevant objects must be detected and classified in real-

time from the moving car. For obstacle recognition, we 

generally use stereo analysis followed by a classification 

stage. 

 

Stereo vision delivers three-dimensional measurements. 

A height threshold is applied in order to distinguish 

between ground and obstacle features. Points above 

ground are grouped to objects. Detected objects are 

tracked over time to estimate their motion. 

 

Although very powerful, stereo analysis has three 

drawbacks with respect to the application that we have 

in mind. First, the grouping process tends to merge 

objects which are close to each other, e.g. a pedestrian in 

front of a vehicle or a child behind a car. Secondly, the 

height threshold implies the risk to miss small obstacles 

which are close to the ground. Thirdly, motion 
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Fig. 1.1 A child behind a car 



IEEE Trans. on Intelligent Transportation Systems  Franke, Heinrich 

information included in the sequence is exploited for the 

detected objects only. 

 

Motion analysis, on the other hand, allows to estimate 

the motion of any pixel based on the analysis over time 

and thus detection of any moving object. 

 

In vehicles, a precise recovery of the ego-motion is 

necessary in order to distinguish between static and 

moving objects. Unfortunately, the ego-motion 

estimation is a difficult problem which requires 

considerable computational power and usually lacks 

robustness. The presence of optical flow does not 

automatically indicate a moving object, while zero flow  

does not mean a zero risk. Depending on depth, a 

collision could take place in either case. 

 

A proper combination of both techniques promises the 

optimal exploitation of the available information in 

space and time. In this paper, we present an elegant 

method which uses the fact that stereo disparity and 

optical flow are connected via real-world depth. The so 

called “flow/depth constraint” allows to test each motion 

vector directly against the stereo disparity to detect 

moving objects. The detection works within a few image 

frames with very low computational cost. 

 

In section 2 we describe the systems used for stereo and 

motion analysis. The fusion of stereo and motion data by 

means of the flow/depth constraint is presented in 

section 3. 

 

A special problem is the mentioned ball since it appears 

very small in images at relevant distances of 20-30 

meters and may still be missed by our combined detector 

if it moves too fast with respect to its own size. In order 

to reach maximum reliability, we have therefore 

developed an appearance based algorithm which is 

described in section 4. 

 

II. STEREO AND MOTION 

A. Stereo Vision 

 

Our stereo analysis [3] is based on a correlation-based 

approach. In order to reach real-time performance on a 

standard PC, design decisions need to be drawn 

carefully.  

 

First of all, we use the sum-of-squared (SSD) or sum-of-

absolute (SAD) differences criterion instead of 

expensive cross correlation to find the optimal fit along 

the epipolar line. Wrong results due to different mean 

and variance of the image pairs can be avoided if gain 

and shutter of the cameras are appropriately controlled. 

 

Secondly, in order to speed up the computation, we use a 

multi-resolution approach in combination with an 

interest operator. The idea is to find correspondences on 

a coarse level that can be recursively refined. First, a 

gaussian pyramid is constructed for the left and right 

stereo image. Areas with sufficient contrast are extracted 

by means of a fast vertical Prewitt edge detector. 

 

Pixels with sufficient gradient are marked, from which a 

binary pyramid is constructed. A pixel (i,j) at level n is 

marked if one of its 4 corresponding pixels at level n-1 is 

set. A non-maximum suppression is applied to the 

gradient image in order to further speed up the 

processing. In this case, we find about 1100 attractive 

points at pyramid level zero (original image level), 700 

at level one and 400 at level 2 on typical image 

sequences. Only those correlation windows with the 

central pixel marked in these interest images are 

considered during the disparity estimation procedure. 

 

Depending on the application, the correlation process 

starts at level one or two of the pyramid. If D is the 

maximum searched disparity at level zero, it reduces to 
nD )2/(  at level n. At level 2 this corresponds to a 

saving of computational burden of about 90% compared 

to a direct computation at level zero. Furthermore, 

smaller correlation windows can be used at higher levels 

which again accelerates the computation. 

 

The result of this correlation is then transferred to the 

next lower level. Here, only a fine adjustment has to be 

 
Fig. 2.1: Color encoded disparity image generated by the 

correlation approach. Red signals close, green means 

far. 
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performed within a small horizontal search area of +/- 1 

pixel. This process is repeated until the final level is 

reached. At this level, subpixel accuracy is achieved by 

fitting a parabolic curve through the computed 

correlation coefficients. 

 

The price we have to pay for this fast algorithm is that 

mismatches in the first computed level propagate down 

through the pyramid and lead to serious errors. Since the 

quality of a found match cannot be judged by the 

measured SSD or SAD, we compute the normalized 

cross correlation coefficient for the best matches at the 

highest correlation level and eliminate bad matches from 

further investigations. In addition, a left-right check can 

be applied to the disparity images on the different 

pyramid levels. In case of ambiguities, the best match or 

the match with the smaller disparity is selected. The 

latter strategy avoids the erroneous detection of close 

obstacles caused by periodic structures. 
 
Usually, we start at level 2 (resolution 91x64 pixels) and 

allow a maximum disparity of 60 pixels corresponding 

to a minimum distance of 4 meters. In this case, the total 

analysis including pyramid construction runs at about 30 

milliseconds on a 700 MHz Pentium III on an average. 

Starting at higher levels causes problems in our field of 

applications, since relevant structures may be lost. 

 
Fig. 2.1 shows the disparity image that we get by this 

scheme for the situation of Fig. 1.1. 

 

B. Motion Analysis 

 
Stereo object detection usually is done by clustering 

disparity features to gather 3D objects. As mentioned in 

the introduction, this method is not sufficient if the 

distance between two objects is lower than a predefined 

threshold. Objects with a close distance will merge to a 

single object even if velocities vary. For a fast detection 

of moving objects, regardless size and distance, it is 

necessary to measure motion within the images directly. 

 

Based on performance comparison of a number of 

optical flow techniques, emphasizing the accuracy and 

density of measurements on realistic image sequences 

[6], we are using a basic differential (gradient based) 

optical flow method from Lukas and Kanade [13]. 

 

The gradient based method assumes that gray values of 

moving objects do not change over time which is usually 

the case in a wide range of our environmental scenes. 

The computation of the optical flow is illustrated by Fig. 

2.2. which is leading to the one dimensional continuity 

equation (2.1) where the gray value shift u∆ is given as 

the ratio between the temporal and spatial derivatives 

tg  and ug . 

 

0=⋅∆+ ut gug       (2.1) 

0=⋅∆+⋅∆+ vut gvgug   (2.2) 

 
Accordingly, equation (2.2) can be derived for the two 

dimensional case. The two dimensional optical flow 

( u∆ , v∆ ) is given by the least squares solution of (2.2). 

And, within a small image region of N pixels, we get the 

following:      
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As an example, the resulting optical flow field is shown 

in Fig. 2.3. 

 
Of course, many different methods for optical flow 

computation like region-based matching [8], energy-

based [9] and phase based [10] methods are available. 
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Fig. 2.2: gradient based optical flow 
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The basic gradient method can also be improved by 

using either second order derivatives or smoothness 

constraints for the flow field [11]. 

However, none of the above methods is capable of 

computing dense optical flow fields under real-time 

conditions. Usually, special hardware and parallel 

processing is needed in order to reach acceptable frame 

rates whereas the basic gradient flow can be computed in 

real-time on a standard PC. Furthermore, we will show 

that in combination with stereo, the basic method is 

more than sufficient for our detection problem.  

 

III. FUSION OF STEREO AND MOTION 

 
Both methods, stereo and motion, have certain 

disadvantages for object detection. As described above, 

stereo extracts depth information without correlation 

over time. The optical flow on the other hand is able to 

detect even small gray value changes providing the 

possibility for early detection of moving objects. But 

with a moving camera, it lacks from suppression of 

background-flow without depth information. 

 

In order to use the information of both systems in an 

optimal way, we suggest a sensor fusion method. We 

will show that with the proposed fusion of stereo and 

motion both methods supplement their shortcomings 

leading to a robust detection of arbitrary moving objects. 

 

A. Flow/Depth constraint 

 
Let us assume a purely longitudinal moving camera and 

a stationary environment for the moment. For the 

transformations between the 3D world coordinate 

system ( zyx ,, ) and the corresponding 2D image 

coordinate system ( vu, ), we are using a pinhole camera 

model with the focal length f and us as the size of a 

sensor element of the camera chip. With the pinhole 

camera model and the stereo base line  b , we can derive 

the disparity D  and the optical flow ( vu &&, ) from 

triangulation leading to the following equations: 

 

zs

bf
D

u ⋅

⋅
=    ,   

z

z

u

u &&
=    ,   

z

z

v

v &&
=           (3.1) 

 
Both, disparity and optical flow, depend on the real-

world depth z . Therefore, the optical flow field can be 

computed from depth information and vice versa for 

stationary objects. 

 

However, computation of the real-world depth is not 

necessary in our case. Switching variables for vehicle 

speed sz ∆=&  and the horizontal and vertical 

components of the optical flow uFu =& , vFv =& , the 

depth factor is eliminated by building the quotient 

between the optical flow and the disparity. Separately 

applied to the horizontal and vertical components of the 

optical flow, this leads to the following constraints: 
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Equations (3.2) can be illustrated by inclined planes over 

the image region ( vu, ). The gradient of the planes is 

determined by the stereo base line b , the size of a 

 

Fig. 2.3: computed gradient flow field  
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Fig. 3.1: flow/depth quotient plane 
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sensor element of the camera chip us , the focal length 

f  and the vehicle speed s∆  [m/frame]. Fig. 3.1 shows 

this plane for the horizontal component of equation 3.2. 

 
Using our in-vehicle stereo camera system, the camera 

parameters f , us  and b  usually remain constant while 

only the speed varies over time. Therefore, the 

inclination of the plane changes as a function of the 

vehicle’s speed only. 

 
The quotient values for pixels belonging to stationary 

objects will match the plane. If the quotient does not 

match the value of the plane, we have to consider a 

moving object at this image position. Fig. 3.2 shows four 

consecutive images of a test sequence. All objects within 

the scene are stationary except one vehicle which backs 

into the street from the right while the camera is moving 

forward. The flow/depth quotient is computed for one 

line in the image center only. The corresponding values 

are displayed in green. The value of the quotient plane is 

displayed in red. If stationary objects are present, the 

quotient measurements follow the predefined value of 

the plane. Quotient values corresponding to the moving 

object vary distinctively from the plane.  

 

B. Quotient Noise 

 

As we see from Fig. 3.2, there is some measurement 

noise from the underlying stereo and optical flow within 

the flow/depth quotient which complicates segmentation 

of moving objects. But since the measurement noise for 

the disparity and optical flow preprocessing is well 

known, we can derive the maximum error of the quotient 

and use it as a threshold function for the segmentation. 

 

From 
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we get the following function for the maximum quotient 

error for the horizontal and vertical flow, respectively: 
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where Q  is the value of the flow/depth plane and 
*

D  is 

the current measurement value for the disparity. 

FD ∆∆ , are the known maximum errors for the 

disparity and optical flow preprocessing. Together with 

equation (3.2) the  maximum error of the horizontal 

quotient value is given by: 
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Except u , equation (3.5) is the same for the vertical 

quotient. Fig. 3.3 illustrates the maximum allowed 

deviation from the plane, which basically is the absolute 

value of equation (3.5). We will use this as the threshold 

function. 

 

Segmentation of moving objects is a three step process: 

 

1. Compute the horizontal and vertical quotients from 

the optical flow and the disparity for every pixel 

Fig. 3.2: deviation of flow/depth value (green) from 

the quotient plane (red) if a moving object is present  

*D
vu,

Q∆

Fig. 3.3: maximum flow/depth quotient noise 
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(u,v) for which depth and motion information is 

present. 

2. Compare the computed quotient values with the 

reference values from the flow/depth plane at 

position (u,v) multiplied with the known vehicle 

speed s∆ . 

3. Tag image position (u,v) as “moving object” if the 

difference between reference value and quotient is 

more than Q∆  in at least one direction. 

 

C. Stabilization 

 
So far, pure longitudinal camera motion was assumed. 

We use the above method within a demonstrator vehicle 

where the camera is mainly moving in longitudinal 

direction. Additionally, there are rotational components 

about all three axes. 

 

There is a distinct flow pattern corresponding to rotation 

and translation along every camera axes. As the camera 

movement is a combination of camera translation and 

rotation, the optical flow is a linear combination of 

independent components. 

 

In order to use the flow/depth constraint as described 

above, we have to stabilize the image so that all 

rotational components are zero and only the translational 

flow remains. 

 

Our stabilization is estimating self-motion using a 

matched filter method [12]. Each predefined filter is 

tuned to one flow pattern corresponding to either camera 

pitch, yaw or roll according rotation for the three camera 

axes. We assume that the flow preprocessing stage 

provides the optical flow as an input to the matched 

filters. The elimination of the rotational flow 

components is done in three steps: 

 

1. Compute the filter output from the weighted sum of 

the scalar product between the optical flow and the 

matched filter pattern at each image position. This 

results in a single scalar which is the rotational 

speed for this axis. 

2. An estimate for the rotational flow field is given by 

the product of the matched filter pattern and the 

rotational speed from the first step. 

3. The compensated flow is given by the difference 

between the measured optical flow and the 

estimated rotational flow field from step 2. 

 

The method is very well adapted to our stabilization 

task. Based on the optical flow which we take from the 

preprocessing stage there is only a small amount of  

computational power needed for the stabilization within 

every image cycle. The matched filter patterns for all 

three axes do not change over time, so they can be 

computed only once when the system is initialized. If we 

assume, that the optical flow is present for n pixels 

within the image, we only need 2n MUL, 2n-1 SUM and 

1 DIV operation to compute the rotational speed from 

step 1. The flow prediction from step 2 needs  2n MUL 

and the compensation from step 3 needs 2n SUB 

operations. 

 

D. Results 

 

The system has been tested on several inner city image 

sequences with pedestrians involved. As an example, 

one of these scenes is shown in Fig. 3.4. 

 

Fig. 3.4: detection of a child within an image sequence 

taken from a moving camera 
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The sequence has been taken from our in-vehicle stereo 

camera system. The vehicle speed is 18 km/h and the 

slight pitch and yaw movement of the camera has been 

compensated by the described matched filter method. 

 

The result of the flow/depth constraint is overlaid onto 

the image. As can be seen, the algorithm is very 

sensitive to movements that don’t match the motion of a 

static environment with respect to the moving camera, 

while background noise is very low. 

 

The robust and fast detection can only be achieved 

because our fusion method is using the information from 

the stereo and the optical flow subsystems in an optimal 

way. The head of the child is detected within only three 

image frames after its first appearance behind the front 

window of the car. With single use of stereo or optical 

flow alone this wouldn’t be possible. 

 

The detection is independent of size or shape of the 

object. Since everything is done on a small pixel based 

neighborhood, the detection even works for non-rigid 

motion from pedestrians where motion varies for 

different parts of the body. However, in Fig. 3.4, the 

motion of legs and arms with respect to their size is 

fairly high and therefore out of the measuring range of 

our current motion analysis.  

 
The flow/depth constraint also works on areas where the 

flow is zero. Due to the fact that our camera is moving, a 

flow equals zero does not automatically mean a zero 

risk. The subimages in Fig. 3.4 have been cropped from 

the original video at a fixed position. Because the 

camera is moving, there is obvious motion of  stationary 

objects in the background and the cars in front. Even 

though the child is moving with respect to world 

coordinates, there is almost zero optical flow for the 

child’s head since its position within the image stays 

nearly constant over time. But as one can see there is no 

difference in detection even under this extreme 

conditions. 

 

The current system works for low vehicle speed. Due to 

our optical flow algorithm, the range for valid image 

motion is restricted to ± 2 pixel/frame. With the current 

camera and a video rate of 25 frames/s, this restricts the 

maximum vehicle speed to 25km/h. As flow range is 

limited, the used stabilization is optimal for small 

rotational velocities only. 

 

In order to overcome this restrictions, we are working on 

a multi-scale approach for optical flow which will 

extend the current measurement range. 

 

IV. BALL DETECTION 

 
If a ball bounces on the road, the risk of a child 

following is very high. Therefore, we have to pay special 

attention to the recognition of this situation. 

 

The power of human perception stems from its parallel 

processing capability. If a ball moves across the road, 

motion will attract our attention immediately. This is 

what we try to copy if we do motion analysis. However, 

if the motion is small, humans will recognize the ball 

based on its appearance. 

 

There are two cases where the above described 

flow/depth analysis may fail to detect balls. First, 

relevant balls appear very small in the images and 

secondly, they can move too fast for the motion analysis. 

For these cases we have built an alternative appearance 

based detection scheme that consists of 4 steps [5]: 

 

1. Potential balls are detected by means of a Hough 

transform for circles of different radii. In order to 

detect the ball early, we have to search for small 

circles. 

2. Relevant balls have a certain size that can be 

estimated if the distance to the camera is known. 

This distance is measured utilizing the stereo vision 

capability of UTA. Circles that do not match the 

 
 

Fig. 4.1: Situation with three balls and structured 

background. Potential balls found by the evaluation 

of the Hough accumulator are marked. 
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size constraint are rejected. In addition, balls outside 

a predefined driving corridor are ignored in the 

sequel. 

3. Although most of the erroneously detected obstacles 

(false positives) can be rejected by the second stage, 

hub caps and other circular objects cause false 

alarms. In order to solve this problem, an artificial 

neural network (ANN) has been trained to 

distinguish between balls and other circular objects. 

4. Finally, the motion parameters are determined and 

reactions to balls with physically impossible motion 

are disabled. 

 

These four steps are described in detail below. 

 

A. Detection 

 

The Hough transform has proven to be a robust detection 

scheme in many applications. Edge points of lines, 

circles, ellipsoids etc. can be mapped to common points 

in the parameter space, even if the contours are noisy 

due to low contrast or low signal to noise ratio. Since 

balls are ideal circles if the pixels of the camera are 

quadratic, it is promising to use a version which is 

specialized to detect circles. 

 

The representation of a circle by 
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requires three parameters, i.e. the two coordinates which 

specify the center ),( 00 yx  and the radius r . 

Therefore, the parameter space is three-dimensional. 

Since the radii of the circles vary from 3 pixels at 25m to 

16 pixels at 5m (UTA is equipped with 12mm lenses and 

½” imager), the size of the accumulator would be 

384x256x14. 

In order to achieve real-time capability, the basic 

algorithm needs to be improved. Above all, we have to 

avoid the third dimension as much as possible. We start 

with a simple but fast Sobel filter to determine the 

spatial derivatives which are then squared, added and 

thresholded. Then, a non-maximum suppression is 

carried out and the local orientation of each remaining 

edge point is calculated. The obtained edge-points are 

mapped onto 4 Hough spaces assuming radii of 4, 7, 10 

and 13 pixels. A “max”-operator is subsequently applied 

to these accumulators pixel by pixel and one final 

“max”-accumulator is formed. Fig. 4.2 shows this 

“max”-accumulator for the image displayed in Fig. 4.1. 

Its darkness is proportional to the values of the 

accumulator. 

 

Next, an adaptive threshold is applied to this 

accumulator and the local maxima of the obtained 

“blobs” are seeked. These points are good estimates for 

the center of potential circles. In a final step, the best 

center and radius is determined in the original image for 

each detected maximum. In the considered example, six 

peaks in the “max”-accumulator are above an adaptive 

threshold. They lead to the six detected circles shown in 

Fig. 4.1. Unfortunately, one in the tree right of the 

building is hard to see. 

 
The parameters of this stage have been chosen to 

minimize the number of missed hits (false negative). 

Since the balls have often a low contrast we have to use 

low thresholds. The consequence is that we find circles 

that do not correspond to balls. Therefore, further 

 
 

Fig. 4.2 Hough accumulator. The darkness is 

proportional to the probability of a detected circle. 

 

Fig. 4.3: Remaining ball candidates after size and 

position check. 
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computational steps are necessary to eliminate those 

hits. 

 

B. Check of size and position 

 

The size of balls we are looking for is typically in the 

range between 15 and 30 cm. If we could measure not 

only the radius but also the real diameter in centimeter, 

we would be able to eliminate many false alarms. It is 

straight forward to exploit UTA’s stereo vision 

capability to determine distance and size of the potential 

balls. 

 
We simply crop the image region containing the circle of 

interest and use a fast correlation to determine the 

disparity and distance of all circles. All candidates that 

do not meet the size expectation are deleted. In addition, 

circles that are outside a predefined area in the world are 

also removed. 

 
Fig. 4.3 shows all circles that have been accepted in this 

stage. The two circles in the background have been 

rejected (compare Fig. 4.1). 

 

C. Classification 

 

Although stereo allows to remove many erroneous 

circles, many objects remain that do not correspond to 

balls but have the correct size like headlights, hub caps, 

people’s heads and parts of traffic signs, just to mention 

some. 

 

One might think of using simple heuristics like “balls are 

white circular areas”. However, balls are three-

dimensional objects that produce their own shadows: 

one half is bright and the opposite half is dark. In 

addition, they are often colored. 

 
Our general approach for those problems is training 

instead of programming; therefore we regard the object 

recognition problem as a classification problem to be 

solved by classification techniques which require a 

training procedure based on a large number of examples. 

The advantage of this approach is that no explicit models 

of the searched objects have to be constructed, which 

would often be a rather difficult, if not impossible task.  

 

In the considered application, we use an ANN with 

receptive fields [4] which can be trained very efficiently 

and which performs very fast. The input is the cropped 

region of interest that has been scaled to a uniform size 

of 16x16 pixels. The net has two output neurons, one 

signaling ball and the other garbage recognition. 

 

Robustness of the ANN classifier has been obtained by 

means of a bootstrapping procedures. We began with a 

first set of training samples, tested the resulting system 

in the real-world environment and retrained the 

recognition errors in order to generate a new version of 

the system that then had to undergo the same procedure, 

and so on.  

 
Fig. 4.4 shows some examples of balls and garbage 

which have been used in the training phase. The 

         
Fig. 4.4: Examples of circular objects detected by Hough transform and passed by the stereo 

module 

 
Fig. 4.5: The ROC-curve shows the percentage of 

correct classified balls versus the percentage of 

misclassification, if the final threshold is varied. 
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performance of the obtained classifier can be deducted 

from the receiver operating curve (ROC) shown in Fig. 

4.5. This curve displays the percentage of correctly 

classified objects vs. the percentage of false positives if 

the decision threshold is varied. For example, if we want 

to classify 80% of all balls correctly, we have to accept 

that about 5% of all false positives are erroneously 

accepted. 

 
In the considered example, the classifier rejected the 

circular structure on the girl of Fig. 4.3 successfully, as 

can be seen in Fig. 4.6. 

 

D. Tracking 

 

All remaining ball candidates are finally tracked and 

their motion parameters are estimated. These parameters 

allow to distinguish between moving balls and other 

circular objects that could not be rejected by the 

classification module. Hub caps are not moving while 

the headlights of oncoming vehicles, which often appear 

as bright circles, show a high longitudinal motion. 

Circles that show these behaviors are certainly not of 

interest for us. 

 

Each circle that passed the stages described above is 

therefore tracked over time. We assume a linear motion 

and use a standard Kalman filter to estimate position and 

velocity of each object of interest. A weighted distance 

measure is used to set up the correspondence between 

the tracked circles and the detected candidates. 

 
The tracking is illustrated by the sequence shown in Fig. 

4.7. Three frames show the first detection, the last 

successful track and a frame in between. Additionally 

the track is shown. 

 

The corresponding Fig. 4.8 shows longitudinal, lateral 

and vertical position of the ball in the vehicles 

coordinate system. Fig. 4.9 shows the estimates of the 

longitudinal (relative), lateral and vertical velocity, 

derived by the mentioned Kalman filter. The ball was 

first detected at 21m. UTA approached the ball with a 

speed of 11 m/sec. The lateral speed of the ball was 

about 2 m/sec, slowly decreasing. UTA came to a stop, 

 
Fig. 4.6: Remaining balls after classification. All 

garbage has been removed. 

 
 

 
 

Fig. 4.7: Three images of  the considered sequence 

showing the first detection and the last successfully 

tracked ball as well as one frame taken between. The 

track of the ball is shown additionally. 
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when the ball was about 7m apart. 

 

E. Results 

 
The system has been successfully tested many times 

under various weather conditions, including rain. 

Typically, the ball is detected at a distance of 20-25m 

ahead. If it shows a significant lateral motion and 

crosses UTA’s driving corridor, the horn is activated 

immediately and a braking maneuver is initiated. 

 

At a speed of 10m/sec and a moderate deceleration of 

0.5g, the braking distance is about 10m. Although we 

have some delay in UTA’s brake due to the interface we 

use in this experimental car, the vehicle comes to a 

secure stop in front of the ball. 

 

If the speed of our vehicle would be significantly higher, 

the remaining braking distance would be not sufficient. 

However, we still contribute to the traffic safety: the 

horn will warn a child intending to run across the street. 

Additionally, the emergency braking will reduce the 

kinetic energy significantly and therefore diminish the 

impact of a potential collision. 

 

The system processes 25 frames per second on a 

700MHz Pentium. The detection stage requires about 20 

msec. Stereo, classification and tracking need about 6 

msec together. The system is able to detect and track 

several circular objects in parallel. 

 

V. SUMMARY 

 

The early detection of dangerous situations in urban 

traffic is a serious challenge for image understanding 

systems. Up to now, we had stereo vision to detect 

obstacles in front of the car only. 

 

The presented fusion of stereo and motion analysis is a 

new powerful scheme that allows early detection of 

moving obstacles even if they are partially occluded and 

non-rigid. The disparity information is already available 

in UTA and the simple motion analysis runs in real-time 

too. Since the fusion algorithm has to compare the 

flow/depth quotient against a threshold function at 

distinct points only, it is computationally highly 

efficient. Its current limitation to low vehicle speed due 

to the used optical flow measurement shall be overcome 

by means of a multi-scale approach. 

 

Human drivers associate a ball bouncing on the road 

with a dangerous situation. The presented vision system 

is able to recognize those situations. Although the 

considered objects are quite small, the combination of 

Hough transform, stereo vision, classification and 

tracking results in a robust and fast algorithm. 
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